
// Program 2

// CIS 200-01

// Due: 4/5/2018

// Grading ID: Z5860

// File: Prog3Form.cs

// This class creates the main GUI for Program 3. It provides a

// File menu with About, Exit, Open, and Save items, an Insert menu with Patron and

// Book items, an Item menu with Check Out and Return items, an Edit menu, and a

// Report menu with Patron List, Item List, and Checked Out Items items.

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.IO;

using System.Runtime.Serialization.Formatters.Binary;

using System.Runtime.Serialization;

namespace LibraryItems

{

 public partial class Prog3Form : Form

 {

 private Library _lib; // The library

 private BinaryFormatter formatter = new BinaryFormatter();

 private BinaryFormatter reader = new BinaryFormatter();

 private FileStream output;

 private FileStream input;

 // Precondition: None

 // Postcondition: The form's GUI is prepared for display. A library object.

 public Prog3Form()

 {

 InitializeComponent();

 _lib = new Library(); // Create the library

 }

 // Precondition: File, About menu item activated

 // Postcondition: Information about author displayed in dialog box

 private void aboutToolStripMenuItem_Click(object sender, EventArgs e)

 {

 string NL = Environment.NewLine; // NewLine shortcut

 MessageBox.Show($"Program 3{NL}Grading ID: Z5860{NL}CIS 200-01{NL}April 5th, 2018",

 "About Program 3");

 }

 // Precondition: File, Exit menu item activated

 // Postcondition: The application is exited

 private void exitToolStripMenuItem_Click(object sender, EventArgs e)

 {

 Application.Exit();

 }

 // Precondition: Report, Patron List menu item activated

 // Postcondition: The list of patrons is displayed in the reportTxt

 // text box

 private void patronListToolStripMenuItem_Click(object sender, EventArgs e)

 {

 StringBuilder result = new StringBuilder(); // Holds text as report being built

 // StringBuilder more efficient than String

 List<LibraryPatron> patrons; // List of patrons

 string NL = Environment.NewLine; // NewLine shortcut

 patrons = _lib.GetPatronsList();

 result.Append($"Patron List - {patrons.Count} patrons{NL}{NL}");

 foreach (LibraryPatron p in patrons)

 result.Append($"{p}{NL}{NL}");

 reportTxt.Text = result.ToString();

 // Put cursor at start of report

 reportTxt.SelectionStart = 0;

 }

 // Precondition: Report, Item List menu item activated

 // Postcondition: The list of items is displayed in the reportTxt

 // text box

 private void itemListToolStripMenuItem_Click(object sender, EventArgs e)

 {

 StringBuilder result = new StringBuilder(); // Holds text as report being built

 // StringBuilder more efficient than String

 List<LibraryItem> items; // List of library items

 string NL = Environment.NewLine; // NewLine shortcut

 items = _lib.GetItemsList();

 result.Append($"Item List - {items.Count} items{NL}{NL}");

 foreach (LibraryItem item in items)

 result.Append($"{item}{NL}{NL}");

 reportTxt.Text = result.ToString();

 // Put cursor at start of report

 reportTxt.SelectionStart = 0;

 }

 // Precondition: Report, Checked Out Items menu item activated

 // Postcondition: The list of checked out items is displayed in the

 // reportTxt text box

 private void checkedOutItemsToolStripMenuItem_Click(object sender, EventArgs e)

 {

 StringBuilder result = new StringBuilder(); // Holds text as report being built

 // StringBuilder more efficient than String

 List<LibraryItem> items; // List of library items

 string NL = Environment.NewLine; // NewLine shortcut

 items = _lib.GetItemsList();

 // LINQ: selects checked out items

 var checkedOutItems =

 from item in items

 where item.IsCheckedOut()

 select item;

 result.Append($"Checked Out Items - {checkedOutItems.Count()} items{NL}{NL}");

 foreach (LibraryItem item in checkedOutItems)

 result.Append($"{item}{NL}{NL}");

 reportTxt.Text = result.ToString();

 // Put cursor at start of report

 reportTxt.SelectionStart = 0;

 }

 // Precondition: Insert, Patron menu item activated

 // Postcondition: The Patron dialog box is displayed. If data entered

 // are OK, a LibraryPatron is created and added to the library

 private void patronToolStripMenuItem_Click(object sender, EventArgs e)

 {

 PatronForm patronForm = new PatronForm(); // The patron dialog box form

 DialogResult result = patronForm.ShowDialog(); // Show form as dialog and store result

 if (result == DialogResult.OK) // Only add if OK

 {

 // Use form's properties to get patron info to send to library

 _lib.AddPatron(patronForm.PatronName, patronForm.PatronID);

 }

 patronForm.Dispose(); // Good .NET practice - will get garbage collected anyway

 }

 // Precondition: Insert, Book menu item activated

 // Postcondition: The Book dialog box is displayed. If data entered

 // are OK, a LibraryBook is created and added to the library

 private void bookToolStripMenuItem_Click(object sender, EventArgs e)

 {

 BookForm bookForm = new BookForm(); // The book dialog box form

 DialogResult result = bookForm.ShowDialog(); // Show form as dialog and store result

 if (result == DialogResult.OK) // Only add if OK

 {

 try

 {

 // Use form's properties to get book info to send to library

 _lib.AddLibraryBook(bookForm.ItemTitle, bookForm.ItemPublisher,

int.Parse(bookForm.ItemCopyrightYear),

 int.Parse(bookForm.ItemLoanPeriod), bookForm.ItemCallNumber, bookForm.BookAuthor);

 }

 catch (FormatException) // This should never happen if form validation works!

 {

 MessageBox.Show("Problem with Book Validation!", "Validation Error");

 }

 }

 bookForm.Dispose(); // Good .NET practice - will get garbage collected anyway

 }

 // Precondition: Item, Check Out menu item activated

 // Postcondition: The Checkout dialog box is displayed. If data entered

 // are OK, an item is checked out from the library by a patron

 private void checkOutToolStripMenuItem_Click(object sender, EventArgs e)

 {

 List<LibraryItem> items; // List of library items

 List<LibraryPatron> patrons; // List of patrons

 items = _lib.GetItemsList();

 patrons = _lib.GetPatronsList();

 if (((items.Count - _lib.GetCheckedOutCount()) == 0) || (patrons.Count() == 0)) // Must have

items and patrons

 MessageBox.Show("Must have items and patrons to check out!", "Check Out Error");

 else

 {

 CheckoutForm checkoutForm = new CheckoutForm(items, patrons); // The check out dialog box

form

 DialogResult result = checkoutForm.ShowDialog(); // Show form as dialog and store result

 if (result == DialogResult.OK) // Only add if OK

 {

 _lib.CheckOut(checkoutForm.ItemIndex, checkoutForm.PatronIndex);

 }

 checkoutForm.Dispose(); // Good .NET practice - will get garbage collected anyway

 }

 }

 // Precondition: Item, Return menu item activated

 // Postcondition: The Return dialog box is displayed. If data entered

 // are OK, an item is returned to the library

 private void returnToolStripMenuItem_Click(object sender, EventArgs e)

 {

 List<LibraryItem> items; // List of library items

 items = _lib.GetItemsList();

 if ((_lib.GetCheckedOutCount() == 0)) // Must have items to return

 MessageBox.Show("Must have items to return!", "Return Error");

 else

 {

 ReturnForm returnForm = new ReturnForm(items); // The return dialog box form

 DialogResult result = returnForm.ShowDialog(); // Show form as dialog and store result

 if (result == DialogResult.OK) // Only add if OK

 {

 _lib.ReturnToShelf(returnForm.ItemIndex);

 }

 returnForm.Dispose(); // Good .NET practice - will get garbage collected anyway

 }

 }

 // Precondition: File, Save menu item activated

 // Postcondition: The SaveFileDialog box is displayed. If data entered

 // are OK, the library is saved to the file

 private void saveToolStripMenuItem_Click(object sender, EventArgs e)

 {

 DialogResult result; // OK or cancel

 string fileName; // name of file saved

 using (SaveFileDialog fileChooser = new SaveFileDialog())

 {

 fileChooser.CheckFileExists = false;

 result = fileChooser.ShowDialog();

 fileName = fileChooser.FileName;

 }

 if (result == DialogResult.OK)

 {

 if (string.IsNullOrEmpty(fileName))

 {

 MessageBox.Show("Invalad File Name", "Error", MessageBoxButtons.OK,

MessageBoxIcon.Error);

 }

 else

 {

 try

 {

 output = new FileStream(fileName, FileMode.Create, FileAccess.Write);

 formatter.Serialize(output, _lib);

 }

 catch (IOException)

 {

 MessageBox.Show("Error Saving File", "Error", MessageBoxButtons.OK,

MessageBoxIcon.Error);

 }

 }

 }

 }

 // Precondition: File, Open menu item activated

 // Postcondition: The OpenFileDialog box is displayed. If data entered

 // are OK, the library is open to the application

 private void openToolStripMenuItem_Click(object sender, EventArgs e)

 {

 DialogResult result; //OK or cancel

 string fileName; // name of the file opened

 using (OpenFileDialog fileChooser = new OpenFileDialog())

 {

 result = fileChooser.ShowDialog();

 fileName = fileChooser.FileName;

 }

 if (result == DialogResult.OK)

 {

 if(string.IsNullOrEmpty(fileName))

 {

 MessageBox.Show("Invalid File Name", "Error", MessageBoxButtons.OK,

MessageBoxIcon.Error);

 }

 else

 {

 input = new FileStream(fileName, FileMode.Open, FileAccess.Read);

 try

 {

 _lib = (Library)reader.Deserialize(input);

 }

 catch (SerializationException)

 {

 input?.Close();

 }

 }

 }

 }

 // Precondition: Edit menu item activated

 // Postcondition: The LibraryPatron box is displayed. If data entered

 // are OK, the library is saved to the file

 private void editPatronToolStripMenuItem_Click(object sender, EventArgs e)

 {

 List<LibraryPatron> patrons; // List of patrons

 patrons = _lib.GetPatronsList();

 if (patrons.Count() == 0) // Must have patrons

 MessageBox.Show("Must have items and patrons to check out!", "Check Out Error");

 else

 {

 ChoosePatronForm choosePatronForm = new ChoosePatronForm(patrons); // The Choose

Patron dialog box form

 DialogResult result = choosePatronForm.ShowDialog(); // Show form as dialog and store result

 if (result == DialogResult.OK) // Only add if OK

 {

 int pIndex = choosePatronForm.PatronIndex;

 LibraryPatron patron = patrons[pIndex];

 PatronForm editPatronForm = new PatronForm(); // The patron form dialog box form

 editPatronForm.PatronName = patron.PatronName;

 editPatronForm.PatronID = patron.PatronID;

 DialogResult resultEditForm = editPatronForm.ShowDialog();

 if(resultEditForm == DialogResult.OK) // Edit only if OK

 {

 patron.PatronName = editPatronForm.PatronName;

 patron.PatronID = editPatronForm.PatronID;

 }

 editPatronForm.Dispose();

 }

 choosePatronForm.Dispose(); // Good .NET practice - will get garbage collected anyway

 }

 }

 private void editBookToolStripMenuItem_Click(object sender, EventArgs e)

 {

 List<LibraryItem> items; // List of items

 items = _lib.GetItemsList();

 if (items.Count() == 0) // Must have items

 MessageBox.Show("Must have items to make edits!", "Check Out Error");

 else

 {

 ChooseBookForm chooseBookForm = new ChooseBookForm(items); // The Choose Book dialog

box form

 DialogResult result = chooseBookForm.ShowDialog(); // Show form as dialog and store result

 if (result == DialogResult.OK) // Only add if OK

 {

 int bIndex = chooseBookForm.ItemIndex;

 LibraryBook book = (LibraryBook)items[bIndex];

 BookForm editBookForm = new BookForm(); // The LibraryBook dialog box form

 editBookForm.ItemTitle = book.Title;

 editBookForm.ItemPublisher = book.Publisher;

 editBookForm.ItemCopyrightYear = Convert.ToString(book.CopyrightYear);

 editBookForm.ItemLoanPeriod = Convert.ToString(book.LoanPeriod);

 editBookForm.ItemCallNumber = book.CallNumber;

 editBookForm.BookAuthor = book.Author;

 DialogResult resultEditForm = editBookForm.ShowDialog();

 if (resultEditForm == DialogResult.OK)

 {

 book.Title = editBookForm.ItemTitle;

 book.Publisher = editBookForm.ItemPublisher;

 book.CopyrightYear = int.Parse(editBookForm.ItemCopyrightYear);

 book.LoanPeriod = int.Parse(editBookForm.ItemLoanPeriod);

 book.CallNumber = editBookForm.ItemCallNumber;

 book.Author = editBookForm.BookAuthor;

 }

 editBookForm.Dispose();

 }

 chooseBookForm.Dispose(); // Good .NET practice - will get garbage collected anyway

 }

 }

 }

}

// Program 2
// CIS 200-01
// Spring 2018
// By: Andrew L. Wright

// File: Library.cs
// This file creates a basic Library class that stores a list
// of LibraryItems and a list of LibraryPatrons. It allows items
// to be checked out by patrons. The lists are accessible to other
// classes in the same namespace (LibraryItems).

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace LibraryItems
{
 [Serializable]
 public class Library
 {
 // Namespace Accessible Data - Use with care
 internal List<LibraryItem> _items; // List of items stored in Library
 internal List<LibraryPatron> _patrons; // List of patrons of Library

 // Precondition: None
 // Postcondition: The library has been created and is empty (no books, no
patrons)
 public Library()
 {
 _items = new List<LibraryItem>();
 _patrons = new List<LibraryPatron>();
 }

 // Precondition: None
 // Postcondition: A patron has been created with the specified values for name
and ID.
 // The patron has been added to the Library.
 public void AddPatron(String name, String id)
 {
 _patrons.Add(new LibraryPatron(name, id));
 }

 // Precondition: theCopyrightYear >= 0 and theLoanPeriod >= 0
 // Postcondition: A library book has been created with the specified
 // values for title, publisher, copyright year, loan period,
 // call number, and author. The item is not checked out.
 // The book has been added to the Library.
 public void AddLibraryBook(String theTitle, String thePublisher, int
theCopyrightYear,
 int theLoanPeriod, String theCallNumber, String theAuthor)
 {
 _items.Add(new LibraryBook(theTitle, thePublisher, theCopyrightYear,
theLoanPeriod,
 theCallNumber, theAuthor));
 }

 // Precondition: theCopyrightYear >= 0 and theLoanPeriod >= 0 and

 // theMedium from { DVD, BLURAY, VHS } and theDuration >= 0
 // Postcondition: A library movie has been created with the specified
 // values for title, publisher, copyright year, loan period,
 // call number, duration, director, medium, and rating. The
 // item is not checked out.
 // The movie has been added to the Library.
 public void AddLibraryMovie(String theTitle, String thePublisher, int
theCopyrightYear,
 int theLoanPeriod, String theCallNumber, double theDuration, String
theDirector,
 LibraryMediaItem.MediaType theMedium, LibraryMovie.MPAARatings theRating)
 {
 _items.Add(new LibraryMovie(theTitle, thePublisher, theCopyrightYear,
theLoanPeriod,
 theCallNumber, theDuration, theDirector, theMedium, theRating));
 }

 // Precondition: theCopyrightYear >= 0 and theLoanPeriod >= 0 and
 // theMedium from { CD, SACD, VINYL } and theDuration >= 0 and
 // theNumTracks >= 0
 // Postcondition: A library music item has been created with the specified
 // values for title, publisher, copyright year, loan period,
 // call number, duration, director, medium, and rating. The
 // item is not checked out.
 // The music item has been added to the Library.
 public void AddLibraryMusic(String theTitle, String thePublisher, int
theCopyrightYear,
 int theLoanPeriod, String theCallNumber, double theDuration, String
theArtist,
 LibraryMediaItem.MediaType theMedium, int theNumTracks)
 {
 _items.Add(new LibraryMusic(theTitle, thePublisher, theCopyrightYear,
 theLoanPeriod, theCallNumber, theDuration, theArtist,
 theMedium, theNumTracks));
 }

 // Precondition: theCopyrightYear >= 0 and theLoanPeriod >= 0 and
 // theVolume >= 0 and theNumber >= 0
 // Postcondition: A library journal has been created with the specified
 // values for title, publisher, copyright year, loan period,
 // call number, volume, number, discipline, and editor. The
 // item is not checked out.
 // The journal has been added to the Library.
 public void AddLibraryJournal(String theTitle, String thePublisher, int
theCopyrightYear,
 int theLoanPeriod, String theCallNumber, int theVolume, int theNumber,
 String theDiscipline, String theEditor)
 {
 _items.Add(new LibraryJournal(theTitle, thePublisher, theCopyrightYear,
 theLoanPeriod, theCallNumber, theVolume, theNumber,
 theDiscipline, theEditor));
 }

 // Precondition: theCopyrightYear >= 0 and theLoanPeriod >= 0 and
 // theVolume >= 0 and theNumber >= 0
 // Postcondition: A library magazine has been created with the specified
 // values for title, publisher, copyright year, loan period,
 // call number, volume, and number. The item is not checked out.

 // The magazine has been added to the Library.
 public void AddLibraryMagazine(String theTitle, String thePublisher, int
theCopyrightYear,
 int theLoanPeriod, String theCallNumber, int theVolume, int theNumber)
 {
 _items.Add(new LibraryMagazine(theTitle, thePublisher, theCopyrightYear,
 theLoanPeriod, theCallNumber, theVolume, theNumber));
 }

 // Precondition: None
 // Postcondition: The number of patrons in the library is returned
 public int GetPatronCount()
 {
 return _patrons.Count;
 }

 // Precondition: None
 // Postcondition: The number of items in the library is returned
 public int GetItemCount()
 {
 return _items.Count;
 }

 // Precondition: 0 <= itemIndex < GetItemCount()
 // 0 <= patronIndex < GetPatronCount()
 // Postcondition: The specified item will be checked out by
 // the specifed patron
 public void CheckOut(int itemIndex, int patronIndex)
 {
 if ((itemIndex >= 0) && (itemIndex < GetItemCount()))
 {
 if ((patronIndex >= 0) && (patronIndex < GetPatronCount()))
 _items[itemIndex].CheckOut(_patrons[patronIndex]);
 else
 throw new ArgumentOutOfRangeException($"{nameof(patronIndex)}",
patronIndex,
 $"0 <= {nameof(patronIndex)} < GetPatronCount()");
 }
 else
 throw new ArgumentOutOfRangeException($"{nameof(itemIndex)}", itemIndex,
 $"0 <= {nameof(itemIndex)} < GetItemCount()");
 }

 // Precondition: 0 <= bookIndex < GetItemCount()
 // Postcondition: The specified book will be returned to shelf
 public void ReturnToShelf(int itemIndex)
 {
 if ((itemIndex >= 0) && (itemIndex < GetItemCount()))
 _items[itemIndex].ReturnToShelf();
 else
 throw new ArgumentOutOfRangeException($"{nameof(itemIndex)}", itemIndex,
 $"0 <= {nameof(itemIndex)} < GetItemCount()");
 }

 // Precondition: None
 // Postcondition: The number of items checked out from the library is returned
 public int GetCheckedOutCount()
 {

 int checkedOutCount = 0; // Running count of checked out books

 foreach (LibraryItem item in _items)
 if (item.IsCheckedOut())
 ++checkedOutCount;

 return checkedOutCount;
 }

 // Namespace Helper Method - Use with care
 // Precondition: None
 // Postcondition: The list of items stored in the library is returned
 internal List<LibraryItem> GetItemsList()
 {
 return _items;
 }

 // Namespace Helper Method - Use with care
 // Precondition: None
 // Postcondition: The list of patrons stored in the library is returned
 internal List<LibraryPatron> GetPatronsList()
 {
 return _patrons;
 }

 // Precondition: None
 // Postcondition: A string is returned presenting the libary in a formatted
report
 public override string ToString()
 {
 // Using StringBuilder to show use of a more efficient way than String
concatenation
 StringBuilder report = new StringBuilder(); // Will hold report as being
built
 string NL = Environment.NewLine; // NewLine shortcut

 report.Append("Library Report\n");
 report.Append($"Number of items stored: {GetItemCount(),4:d}{NL}");
 report.Append($"Number of items checked out:
{GetCheckedOutCount(),4:d}{NL}");
 report.Append($"Number of patrons stored: {GetPatronCount(),4:d}");

 return report.ToString();
 }
 }
}

