// Program 2

// CIS 200-01

// Due: 4/5/2018

// Grading ID: 25860

// File: Prog3Form.cs

// This class creates the main GUI for Program 3. It provides a

// File menu with About, Exit, Open, and Save items, an Insert menu with Patron and
// Book items, an Item menu with Check Out and Return items, an Edit menu, and a
// Report menu with Patron List, Item List, and Checked Out ltems items.

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;
using System.lO;

using System.Runtime.Serialization.Formatters.Binary;
using System.Runtime.Serialization;

namespace Libraryltems

{

public partial class Prog3Form : Form

{
private Library _lib; // The library
private BinaryFormatter formatter = new BinaryFormatter();
private BinaryFormatter reader = new BinaryFormatter();
private FileStream output;
private FileStream input;

// Precondition: None
// Postcondition: The form's GUI is prepared for display. A library object.
public Prog3Form()

{

InitializeComponent();

_lib = new Library(); // Create the library

// Precondition: File, About menu item activated
// Postcondition: Information about author displayed in dialog box
private void aboutToolStripMenultem_Click(object sender, EventArgs e)

{

string NL = Environment.NewLine; // NewLine shortcut

MessageBox.Show(S$"Program 3{NL}Grading ID: Z5860{NL}CIS 200-01{NL}April 5th, 2018",
"About Program 3");

// Precondition: File, Exit menu item activated
// Postcondition: The application is exited
private void exitToolStripMenultem_Click(object sender, EventArgs e)
{
Application.Exit();

}

// Precondition: Report, Patron List menu item activated

// Postcondition: The list of patrons is displayed in the reportTxt

/! text box

private void patronListToolStripMenultem_Click(object sender, EventArgs e)

{
StringBuilder result = new StringBuilder(); // Holds text as report being built

// StringBuilder more efficient than String

List<LibraryPatron> patrons; // List of patrons
string NL = Environment.NewLine; // NewlLine shortcut

patrons = _lib.GetPatronsList();
result.Append(S"Patron List - {patrons.Count} patrons{NL}{NL}");

foreach (LibraryPatron p in patrons)
result.Append(S"{p}{NLKNL}");

reportTxt.Text = result.ToString();
// Put cursor at start of report

reportTxt.SelectionStart = O;

// Precondition: Report, Item List menu item activated
// Postcondition: The list of items is displayed in the reportTxt
// text box

private void itemListToolStripMenultem_Click(object sender, EventArgs e)
{
StringBuilder result = new StringBuilder(); // Holds text as report being built
// StringBuilder more efficient than String
List<Libraryltem> items; // List of library items
string NL = Environment.NewLine; // NewLine shortcut

items = _lib.GetltemsList();
result.Append(S"Item List - {items.Count} items{NL{NL}");

foreach (Libraryltem item in items)
result. Append(S"{itemH{NLK¥NL}");

reportTxt.Text = result.ToString();

// Put cursor at start of report
reportTxt.SelectionStart = 0;

// Precondition: Report, Checked Out Items menu item activated
// Postcondition: The list of checked out items is displayed in the
// reportTxt text box
private void checkedOutltemsToolStripMenultem_Click(object sender, EventArgs e)
{
StringBuilder result = new StringBuilder(); // Holds text as report being built
// StringBuilder more efficient than String
List<Libraryltem> items; // List of library items
string NL = Environment.NewLine; // NewlLine shortcut

items = _lib.GetltemsList();
// LINQ;: selects checked out items
var checkedOutltems =

from item in items

where item.IsCheckedOut()
select item;

result.Append(S"Checked Out Items - {checkedOutltems.Count()} items{NLK{NL}");

foreach (Libraryltem item in checkedOutltems)
result.Append(S"{itemH{NL}{NL}");

reportTxt.Text = result.ToString();

// Put cursor at start of report
reportTxt.SelectionStart = O;
}

// Precondition: Insert, Patron menu item activated
// Postcondition: The Patron dialog box is displayed. If data entered

// are OK, a LibraryPatron is created and added to the library
private void patronToolStripMenultem_Click(object sender, EventArgs e)
{

PatronForm patronForm = new PatronForm(); // The patron dialog box form
DialogResult result = patronForm.ShowDialog(); // Show form as dialog and store result

if (result == DialogResult.OK) // Only add if OK
{

// Use form's properties to get patron info to send to library
_lib.AddPatron(patronForm.PatronName, patronForm.PatronID);

}

patronForm.Dispose(); // Good .NET practice - will get garbage collected anyway

}

// Precondition: Insert, Book menu item activated
// Postcondition: The Book dialog box is displayed. If data entered

// are OK, a LibraryBook is created and added to the library
private void bookToolStripMenultem_Click(object sender, EventArgs e)
{

BookForm bookForm = new BookForm(); // The book dialog box form
DialogResult result = bookForm.ShowDialog(); // Show form as dialog and store result

if (result == DialogResult.OK) // Only add if OK
{
try
{
// Use form's properties to get book info to send to library
_lib.AddLibraryBook(bookForm.ltemTitle, bookForm.ltemPublisher,
int.Parse(bookForm.ltemCopyrightYear),
int.Parse(bookForm.ltemLoanPeriod), bookForm.ltemCallNumber, bookForm.BookAuthor);

catch (FormatException) // This should never happen if form validation works!

{

MessageBox.Show("Problem with Book Validation!", "Validation Error");

}
}

bookForm.Dispose(); // Good .NET practice - will get garbage collected anyway
}

// Precondition: Item, Check Out menu item activated
// Postcondition: The Checkout dialog box is displayed. If data entered
// are OK, an item is checked out from the library by a patron
private void checkOutToolStripMenultem_Click(object sender, EventArgs e)
{

List<Libraryltem> items; // List of library items

List<LibraryPatron> patrons; // List of patrons

items = _lib.GetltemsList();
patrons = _lib.GetPatronsList();

if (((items.Count - _lib.GetCheckedOutCount()) == 0) | | (patrons.Count() == 0)) // Must have
items and patrons
MessageBox.Show("Must have items and patrons to check out!", "Check Out Error");
else

{

CheckoutForm checkoutForm = new CheckoutForm(items, patrons); // The check out dialog box
form

DialogResult result = checkoutForm.ShowDialog(); // Show form as dialog and store result

if (result == DialogResult.OK) // Only add if OK
{

_lib.CheckOut(checkoutForm.ltemIndex, checkoutForm.Patronindex);

}

checkoutForm.Dispose(); // Good .NET practice - will get garbage collected anyway

// Precondition: Item, Return menu item activated
// Postcondition: The Return dialog box is displayed. If data entered

// are OK, an item is returned to the library
private void returnToolStripMenultem_Click(object sender, EventArgs e)
{

List<Libraryltem> items; // List of library items

items = _lib.GetltemsList();

if ((_lib.GetCheckedOutCount() == 0)) // Must have items to return
MessageBox.Show("Must have items to return!", "Return Error");
else

{

ReturnForm returnForm = new ReturnForm(items); // The return dialog box form
DialogResult result = returnForm.ShowDialog(); // Show form as dialog and store result

if (result == DialogResult.OK) // Only add if OK
{

_lib.ReturnToShelf(returnForm.ltemindex);

}

returnForm.Dispose(); // Good .NET practice - will get garbage collected anyway

// Precondition: File, Save menu item activated

// Postcondition: The SaveFileDialog box is displayed. If data entered
// are OK, the library is saved to the file

private void saveToolStripMenultem_Click(object sender, EventArgs e)

{

DialogResult result; // OK or cancel
string fileName; // name of file saved

using (SaveFileDialog fileChooser = new SaveFileDialog())

{

fileChooser.CheckFileExists = false;

result = fileChooser.ShowDialog();
fileName = fileChooser.FileName;

}

if (result == DialogResult.OK)

{
if (string.IsNullOrEmpty(fileName))
{

MessageBox.Show("Invalad File Name", "Error", MessageBoxButtons.OK,
MessageBoxIcon.Error);

}

else

try

{
output = new FileStream(fileName, FileMode.Create, FileAccess.Write);
formatter.Serialize(output, _lib);

!

catch (IOException)

{
MessageBox.Show("Error Saving File", "Error", MessageBoxButtons.OK,

MessageBoxlcon.Error);
!
}
}

// Precondition: File, Open menu item activated
// Postcondition: The OpenFileDialog box is displayed. If data entered
// are OK, the library is open to the application
private void openToolStripMenultem_Click(object sender, EventArgs e)
{

DialogResult result; //OK or cancel

string fileName; // name of the file opened

using (OpenFileDialog fileChooser = new OpenFileDialog())
{

result = fileChooser.ShowDialog();
fileName = fileChooser.FileName;

}

if (result == DialogResult.OK)

{
if(string.IsNullOrEmpty(fileName))
{

MessageBox.Show("Invalid File Name", "Error", MessageBoxButtons.OK,
MessageBoxlcon.Error);

}
else
{
input = new FileStream(fileName, FileMode.Open, FileAccess.Read);
try
{
_lib = (Library)reader.Deserialize(input);
}

catch (SerializationException)

{
input?.Close();
}
}
}

// Precondition: Edit menu item activated

// Postcondition: The LibraryPatron box is displayed. If data entered

// are OK, the library is saved to the file

private void editPatronToolStripMenultem_Click(object sender, EventArgs e)

{

List<LibraryPatron> patrons; // List of patrons
patrons = _lib.GetPatronsList();

if (patrons.Count() == 0) // Must have patrons
MessageBox.Show("Must have items and patrons to check out!", "Check Out Error");
else

{

ChoosePatronForm choosePatronForm = new ChoosePatronForm(patrons); // The Choose
Patron dialog box form

DialogResult result = choosePatronForm.ShowDialog(); // Show form as dialog and store result

if (result == DialogResult.OK) // Only add if OK
{

int plndex = choosePatronForm.Patronindex;
LibraryPatron patron = patrons[pIndex];

PatronForm editPatronForm = new PatronForm(); // The patron form dialog box form
editPatronForm.PatronName = patron.PatronName;
editPatronForm.PatronlD = patron.PatroniD;

DialogResult resultEditForm = editPatronForm.ShowDialog();

if(resultEditForm == DialogResult.OK) // Edit only if OK
{

patron.PatronName = editPatronForm.PatronName;
patron.PatronlD = editPatronForm.PatronlID;

}

editPatronForm.Dispose();

choosePatronForm.Dispose(); // Good .NET practice - will get garbage collected anyway

}
}

private void editBookToolStripMenultem_Click(object sender, EventArgs e)

{

List<Libraryltem> items; // List of items
items = _lib.GetltemsList();

if (items.Count() == 0) // Must have items
MessageBox.Show("Must have items to make edits!", "Check Out Error");
else
{
ChooseBookForm chooseBookForm = new ChooseBookForm(items); // The Choose Book dialog
box form

DialogResult result = chooseBookForm.ShowDialog(); // Show form as dialog and store result

if (result == DialogResult.OK) // Only add if OK

{
int bIndex = chooseBookForm.ltemIndex;
LibraryBook book = (LibraryBook)items[bIndex];

BookForm editBookForm = new BookForm(); // The LibraryBook dialog box form

editBookForm.ltemTitle = book.Title;

editBookForm.ltemPublisher = book.Publisher;
editBookForm.ltemCopyrightYear = Convert.ToString(book.CopyrightYear);
editBookForm.ltemLoanPeriod = Convert.ToString(book.LoanPeriod);
editBookForm.ltemCallNumber = book.CalINumber;
editBookForm.BookAuthor = book.Author;

DialogResult resultEditForm = editBookForm.ShowDialog();

if (resultEditForm == DialogResult.OK)

{
book.Title = editBookForm.ltemTitle;
book.Publisher = editBookForm.IltemPublisher;
book.CopyrightYear = int.Parse(editBookForm.ltemCopyrightYear);
book.LoanPeriod = int.Parse(editBookForm.ltemLoanPeriod);
book.CalINumber = editBookForm.ltemCallINumber;
book.Author = editBookForm.BookAuthor;

editBookForm.Dispose();

}

chooseBookForm.Dispose(); // Good .NET practice - will get garbage collected anyway
}
}
}
}

// Program 2

// CIS 200-01

// Spring 2018

// By: Andrew L. Wright

// File: Library.cs

// This file creates a basic Library class that stores a list

// of LibraryItems and a list of LibraryPatrons. It allows items
// to be checked out by patrons. The lists are accessible to other
// classes in the same namespace (LibraryItems).

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace LibraryItems

{
[Serializable]
public class Library
{
// Namespace Accessible Data - Use with care
internal List<LibraryItem> _items; // List of items stored in Library
internal List<LibraryPatron> _patrons; // List of patrons of Library
// Precondition: None
// Postcondition: The library has been created and is empty (no books, no
patrons)
public Library()
{
_items = new List<LibraryItem>();
_patrons = new List<LibraryPatron>();
}
// Precondition: None
// Postcondition: A patron has been created with the specified values for name
and ID.
// The patron has been added to the Library.
public void AddPatron(String name, String id)
{
_patrons.Add(new LibraryPatron(name, id));
}
// Precondition: theCopyrightYear >= @ and thelLoanPeriod >= 0@
// Postcondition: A library book has been created with the specified
// values for title, publisher, copyright year, loan period,
// call number, and author. The item is not checked out.
// The book has been added to the Library.
public void AddLibraryBook(String theTitle, String thePublisher, int
theCopyrightYear,
int theLoanPeriod, String theCallNumber, String theAuthor)
{
_items.Add(new LibraryBook(theTitle, thePublisher, theCopyrightYear,
thelLoanPeriod,
theCallNumber, theAuthor));
}

// Precondition: theCopyrightYear >= @ and thelLoanPeriod >= © and

// theMedium from { DVD, BLURAY, VHS } and theDuration >= ©
// Postcondition: A library movie has been created with the specified

// values for title, publisher, copyright year, loan period,
// call number, duration, director, medium, and rating. The
// item is not checked out.

// The movie has been added to the Library.

public void AddLibraryMovie(String theTitle, String thePublisher, int
theCopyrightYear,
int theLoanPeriod, String theCallNumber, double theDuration, String
theDirector,
LibraryMediaItem.MediaType theMedium, LibraryMovie.MPAARatings theRating)
{

_items.Add(new LibraryMovie(theTitle, thePublisher, theCopyrightYear,
thelLoanPeriod,
theCallNumber, theDuration, theDirector, theMedium, theRating));

}

// Precondition: theCopyrightYear >= @ and thelLoanPeriod >= © and

// theMedium from { CD, SACD, VINYL } and theDuration >= @ and
// theNumTracks >= ©

// Postcondition: A library music item has been created with the specified

// values for title, publisher, copyright year, loan period,
// call number, duration, director, medium, and rating. The

// item is not checked out.

// The music item has been added to the Library.

public void AddLibraryMusic(String theTitle, String thePublisher, int
theCopyrightYear,
int thelLoanPeriod, String theCallNumber, double theDuration, String

theArtist,
LibraryMedialtem.MediaType theMedium, int theNumTracks)
{
_items.Add(new LibraryMusic(theTitle, thePublisher, theCopyrightYear,
theLoanPeriod, theCallNumber, theDuration, theArtist,
theMedium, theNumTracks));
}
// Precondition: theCopyrightYear >= @ and thelLoanPeriod >= @ and
// theVolume >= @ and theNumber >= 0
// Postcondition: A library journal has been created with the specified
// values for title, publisher, copyright year, loan period,
// call number, volume, number, discipline, and editor. The
// item is not checked out.
// The journal has been added to the Library.

public void AddLibraryJournal(String theTitle, String thePublisher, int
theCopyrightYear,
int thelLoanPeriod, String theCallNumber, int theVolume, int theNumber,
String theDiscipline, String theEditor)

{
_items.Add(new LibraryJournal(theTitle, thePublisher, theCopyrightYear,
theLoanPeriod, theCallNumber, theVolume, theNumber,
theDiscipline, theEditor));

}

// Precondition: theCopyrightYear >= @ and thelLoanPeriod >= © and

// theVolume >= @ and theNumber >= 0

// Postcondition: A library magazine has been created with the specified

// values for title, publisher, copyright year, loan period,

// call number, volume, and number. The item is not checked out.

// The magazine has been added to the Library.
public void AddLibraryMagazine(String theTitle, String thePublisher, int
theCopyrightYear,
int theLoanPeriod, String theCallNumber, int theVolume, int theNumber)
{
_items.Add(new LibraryMagazine(theTitle, thePublisher, theCopyrightYear,
theLoanPeriod, theCallNumber, theVolume, theNumber));

}

// Precondition: None
// Postcondition: The number of patrons in the library is returned
public int GetPatronCount()

{
}

return _patrons.Count;

// Precondition: None
// Postcondition: The number of items in the library is returned
public int GetItemCount()

{
return _items.Count;
}
// Precondition: © <= itemIndex < GetItemCount()
// 0 <= patronIndex < GetPatronCount()
// Postcondition: The specified item will be checked out by
// the specifed patron
public void CheckOut(int itemIndex, int patronIndex)
{
if ((itemIndex >= @) && (itemIndex < GetItemCount()))
{
if ((patronIndex >= @) && (patronIndex < GetPatronCount()))
_items[itemIndex].CheckOut(_patrons[patronIndex]);
else
throw new ArgumentOutOfRangeException($"{nameof(patronIndex)}",
patronIndex,
$"0 <= {nameof(patronIndex)} < GetPatronCount()");
}
else
throw new ArgumentOutOfRangeException($"{nameof(itemIndex)}", itemIndex,
$"0 <= {nameof(itemIndex)} < GetItemCount()");
}

// Precondition: © <= bookIndex < GetItemCount()
// Postcondition: The specified book will be returned to shelf
public void ReturnToShelf(int itemIndex)

{
if ((itemIndex >= 0) && (itemIndex < GetItemCount()))
_items[itemIndex].ReturnToShelf();
else
throw new ArgumentOutOfRangeException($"{nameof(itemIndex)}", itemIndex,
$"0 <= {nameof(itemIndex)} < GetItemCount()");
}

// Precondition: None
// Postcondition: The number of items checked out from the library is returned
public int GetCheckedOutCount()

{

int checkedOutCount = @; // Running count of checked out books

foreach (LibraryItem item in _items)
if (item.IsCheckedOut())
++checkedOutCount;

return checkedOutCount;

}

// Namespace Helper Method - Use with care

// Precondition: None

// Postcondition: The list of items stored in the library is returned
internal List<LibraryItem> GetItemsList()

{
¥

return _items;

// Namespace Helper Method - Use with care

// Precondition: None

// Postcondition: The 1list of patrons stored in the library is returned
internal List<LibraryPatron> GetPatronsList()

{
¥

return _patrons;

// Precondition: None
// Postcondition: A string is returned presenting the libary in a formatted

report
public override string ToString()
{
// Using StringBuilder to show use of a more efficient way than String
concatenation
StringBuilder report = new StringBuilder(); // Will hold report as being
built

string NL = Environment.NewlLine; // NewlLine shortcut

report.Append("Library Report\n");
report.Append($"Number of items stored: {GetItemCount(),4:d}{NL}");
report.Append($"Number of items checked out:

{GetCheckedOutCount(),4:d}{NL}");

report.Append($"Number of patrons stored: {GetPatronCount(),4:d}");

return report.ToString();

